Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
N Engl J Med ; 390(10): 900-910, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38446676

ABSTRACT

BACKGROUND: Microplastics and nanoplastics (MNPs) are emerging as a potential risk factor for cardiovascular disease in preclinical studies. Direct evidence that this risk extends to humans is lacking. METHODS: We conducted a prospective, multicenter, observational study involving patients who were undergoing carotid endarterectomy for asymptomatic carotid artery disease. The excised carotid plaque specimens were analyzed for the presence of MNPs with the use of pyrolysis-gas chromatography-mass spectrometry, stable isotope analysis, and electron microscopy. Inflammatory biomarkers were assessed with enzyme-linked immunosorbent assay and immunohistochemical assay. The primary end point was a composite of myocardial infarction, stroke, or death from any cause among patients who had evidence of MNPs in plaque as compared with patients with plaque that showed no evidence of MNPs. RESULTS: A total of 304 patients were enrolled in the study, and 257 completed a mean (±SD) follow-up of 33.7±6.9 months. Polyethylene was detected in carotid artery plaque of 150 patients (58.4%), with a mean level of 21.7±24.5 µg per milligram of plaque; 31 patients (12.1%) also had measurable amounts of polyvinyl chloride, with a mean level of 5.2±2.4 µg per milligram of plaque. Electron microscopy revealed visible, jagged-edged foreign particles among plaque macrophages and scattered in the external debris. Radiographic examination showed that some of these particles included chlorine. Patients in whom MNPs were detected within the atheroma were at higher risk for a primary end-point event than those in whom these substances were not detected (hazard ratio, 4.53; 95% confidence interval, 2.00 to 10.27; P<0.001). CONCLUSIONS: In this study, patients with carotid artery plaque in which MNPs were detected had a higher risk of a composite of myocardial infarction, stroke, or death from any cause at 34 months of follow-up than those in whom MNPs were not detected. (Funded by Programmi di Ricerca Scientifica di Rilevante Interesse Nazionale and others; ClinicalTrials.gov number, NCT05900947.).


Subject(s)
Carotid Artery Diseases , Microplastics , Plaque, Atherosclerotic , Humans , Carotid Stenosis/diagnostic imaging , Carotid Stenosis/etiology , Carotid Stenosis/pathology , Microplastics/adverse effects , Myocardial Infarction/etiology , Myocardial Infarction/mortality , Plaque, Atherosclerotic/chemistry , Plaque, Atherosclerotic/etiology , Plaque, Atherosclerotic/mortality , Plaque, Atherosclerotic/pathology , Plastics/adverse effects , Prospective Studies , Stroke/etiology , Stroke/mortality , Heart Disease Risk Factors , Endarterectomy, Carotid , Carotid Artery Diseases/etiology , Carotid Artery Diseases/pathology , Carotid Artery Diseases/surgery , Follow-Up Studies
2.
Geroscience ; 46(2): 2531-2544, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38008859

ABSTRACT

MultiMorbidity (MM), defined as the co-occurrence of two or more chronic conditions, is associated with poorer health outcomes, such as recurrent hospital readmission and mortality. As a group of conditions, cardiovascular disease (CVD) exemplifies several challenges of MM, and the identification of prognostic minimally invasive biomarkers to stratify mortality risk in patients affected by cardiovascular MM is a huge challenge. Circulating miRNAs associated to inflammaging and endothelial dysfunction, such as miR-17, miR-21-5p, and miR-126-3p, are expected to have prognostic relevance. We analyzed a composite profile of circulating biomarkers, including miR-17, miR-21-5p, and miR-126-3p, and routine laboratory biomarkers in a sample of 246 hospitalized geriatric patients selected for cardiovascular MM from the Report-AGE INRCA database and BioGER INRCA biobank, to evaluate the association with all-cause mortality during 31 days and 12 and 24 months follow-up. Circulating levels of miR-17, miR-126-3p, and some blood parameters, including neutrophil to lymphocyte ratio (NLR) and eGFR, were significantly associated with mortality in these patients. Overall, our results suggest that in a cohort of geriatric hospitalized patients affected by cardiovascular MM, lower circulating miR-17 and miR-126-3p levels could contribute to identify patients at higher risk of short- and medium-term mortality.


Subject(s)
Cardiovascular System , Circulating MicroRNA , MicroRNAs , Humans , Aged , Multimorbidity , Biomarkers
3.
Antioxidants (Basel) ; 12(8)2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37627504

ABSTRACT

Olive tree by-products have been deeply studied as an invaluable source of bioactive compounds. Several in vitro and in vivo studies showed that olive leaf extract (OLE) has anti-inflammatory and antioxidant properties. Here, we wanted to assess the valuable benefits of two less-studied OLE components-3,4-DHPEA-EDA (Oleacin, OC) and 3,4-DHPEA-EA (Oleuropein-Aglycone, OA)-directly purified from OLE using a cost-effective and environmentally sustainable method, in line with the principles of circular economy. OLE, OC and OA were then tested in human cellular models involved in acute and chronic inflammation and in the pathogenesis of viral infections, i.e., lipopolysaccharide (LPS)-treated monocyte/macrophages (THP-1) and endothelial cells (HUVECs), senescent HUVECs and Poly(I:C)-treated small airway epithelial cells (hSAECs). Results showed that OC and OA are efficient in ameliorating almost all of the pro-inflammatory readouts (IL-1ß, TNF-α, IL-8, ICAM, VCAM) and reducing the release of IL-6 in all the cellular models. In hSAECs, they also modulate the expression of SOD2, NF-kB and also ACE2 and TMPRSS2, whose expression is required for SARS-CoV-2 virus entry. Overall, these data suggest the usefulness of OLE, OC and OA in controlling or preventing inflammatory responses, in particular those associated with viral respiratory infections and aging.

4.
Dermatol Ther (Heidelb) ; 13(6): 1377-1387, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37198526

ABSTRACT

INTRODUCTION: The key role of microRNAs (miRNAs) in the pathogenesis of psoriasis has been extensively discussed in the literature. Increasing evidence suggests that the analysis of miRNA levels may constitute an innovative approach for exploring the clinical efficacy of anti-inflammatory therapies in patients with psoriasis. However, so far there have been no published studies evaluating the effects of modulating circulating miRNAs and the efficacy of anti-interleukin-23 (anti-IL-23) therapy. The main objective of the present was to evaluate the diagnostic/prognostic relevance of the levels of five circulating candidate miRNAs (miR-21, miR-146a, miR-155, miR-210, miR-378) in psoriatic patients treated with the anti-IL-23 drug risankizumab. METHODS: A total of eight psoriatic participants were recruited consecutively from January 2021 to July 2021 at the Dermatology Clinic of Università Politecnica delle Marche (UNIVPM) "Ospedali Riuniti" of Marche. Data on anamnestic, clinical and miRNA evaluations before the initiation of risankizumab therapy and after 1 year (January 2021-July 2022) of risankizumab therapy were available for all patients. RESULTS: A significant reduction in the signs and symptoms in patients treated with risankizumab was observed after 1 year of treatment, suggesting that the drug is effective for treating psoriasis in a context of real-life clinical evaluation. Plasma levels of the two prototypical inflammamiRs, miR-146a and miR-155, were significantly reduced after 1 year of risankizumab therapy. Also, in patients before treatment, a significant positive correlation was found between circulating levels of miR-210 and miR-378 and disease severity scores. CONCLUSIONS: Our results reinforce the notion that specific circulating miRNAs could have clinical relevance as diagnostic/prognostic biomarkers of psoriatic disease and suggest the potential relevance of these miRNAs as biomarkers of treatment response.

5.
Int J Mol Sci ; 24(10)2023 May 16.
Article in English | MEDLINE | ID: mdl-37240169

ABSTRACT

During aging, bone marrow mesenchymal stromal cells (MSCs)-the precursors of osteoblasts-undergo cellular senescence, losing their osteogenic potential and acquiring a pro-inflammatory secretory phenotype. These dysfunctions cause bone loss and lead to osteoporosis. Prevention and intervention at an early stage of bone loss are important, and naturally active compounds could represent a valid help in addition to diet. Here, we tested the hypothesis that the combination of two pro-osteogenic factors, namely orthosilicic acid (OA) and vitamin K2 (VK2), and three other anti-inflammatory compounds, namely curcumin (CUR), polydatin (PD) and quercetin (QCT)-that mirror the nutraceutical BlastiMin Complex® (Mivell, Italy)-would be effective in promoting MSC osteogenesis, even of replicative senescent cells (sMSCs), and inhibiting their pro-inflammatory phenotype in vitro. Results showed that when used at non-cytotoxic doses, (i) the association of OA and VK2 promoted MSC differentiation into osteoblasts, even when cultured without other pro-differentiating factors; and (ii) CUR, PD and QCT exerted an anti-inflammatory effect on sMSCs, and also synergized with OA and VK2 in promoting the expression of the pivotal osteogenic marker ALP in these cells. Overall, these data suggest a potential role of using a combination of all of these natural compounds as a supplement to prevent or control the progression of age-related osteoporosis.


Subject(s)
Bone Diseases, Metabolic , Curcumin , Mesenchymal Stem Cells , Osteoporosis , Humans , Osteogenesis , Quercetin/therapeutic use , Vitamin K 2/pharmacology , Vitamin K 2/metabolism , Curcumin/pharmacology , Bone Marrow/metabolism , Cell Differentiation , Mesenchymal Stem Cells/metabolism , Osteoporosis/drug therapy , Osteoporosis/metabolism , Bone Diseases, Metabolic/metabolism , Cells, Cultured , Bone Marrow Cells
6.
Int J Mol Sci ; 24(9)2023 Apr 29.
Article in English | MEDLINE | ID: mdl-37175783

ABSTRACT

Type 2 diabetes mellitus (T2DM) is a disease characterized by a prolonged hyperglycemic condition caused by insulin resistance mechanisms in muscle and liver, reduced insulin production by pancreatic ß cells, and a chronic inflammatory state with increased levels of the pro-inflammatory marker semaphorin 3E. Phytochemicals present in several foods have been used to complement oral hypoglycemic drugs for the management of T2DM. Notably, dipeptidyl peptidase IV (DPPIV) inhibitors have demonstrated efficacy in the treatment of T2DM. Our study aimed to investigate, in in vitro models of insulin resistance, the ability of the flavanones naringenin and hesperetin, used alone and in combination with the anti-inflammatory natural molecules curcumin, polydatin, and quercetin, to counteract the insulin resistance and pro-inflammatory molecular mechanisms that are involved in T2DM development. Our results show for the first time that the combination of naringenin, hesperetin, curcumin, polydatin, and quercetin (that mirror the nutraceutical formulation GliceFen®, Mivell, Italy) synergistically decreases expression levels of the pro-inflammatory gene SEMA3E in insulin-resistant HepG2 cells and synergistically decreases DPPIV activity in insulin-resistant Hep3B cells, indicating that the combination of these five phytochemicals is able to inhibit pro-inflammatory and insulin resistance molecular mechanisms and could represent an effective innovative complementary approach to T2DM pharmacological treatment.


Subject(s)
Curcumin , Diabetes Mellitus, Type 2 , Dipeptidyl-Peptidase IV Inhibitors , Flavanones , Insulin Resistance , Semaphorins , Humans , Curcumin/pharmacology , Curcumin/therapeutic use , Diabetes Mellitus, Type 2/metabolism , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Flavanones/chemistry , Insulin/therapeutic use , Quercetin/chemistry , Semaphorins/therapeutic use
7.
Biology (Basel) ; 12(3)2023 Mar 12.
Article in English | MEDLINE | ID: mdl-36979130

ABSTRACT

Aging is related to a low-grade and sterile inflammation called inflammaging, recognized as the main risk factor for age-related disease (ARD) development. Inflammaging is fostered by the repeated activation of immune cells, as well as by the accumulation of senescent cells. Recently, a number of natural compounds have gained attention to be tested as anti-aging therapies, based on their anti-inflammatory activity and/or ability to reduce the pro-inflammatory secretome of senescent cells (senomorphyc activity). Here, we investigated the anti-inflammatory and senomorphic properties of an Asian-native Zingiber officinale Roscoe extract (ZOE), commonly consumed as a food spice and herbal medicine. We employed two models of primary endothelial cells (HUVECs), such as the replicative-senescence and LPS-induced response, to investigate the anti-inflammatory/senomorphic effect of ZOE, and one cellular model of neuroinflammation, i.e., immortalized murine microglial cells (BV2). First, we found that the ZOE treatment induced the inhibition of NF-kB activation in BV2 cells. Among the constituents of ZOE, we showed that the terpenoid-enriched fraction (ZTE) was the component able to counteract the phosphorylation of NF-kB(p65), while 6-gingerol (GIN) and 6-shogaol (SHO) did not produce any significant effect. Further, we observed that the treatment with 10 µg/mL of ZOE exerted anti-inflammatory activity on LPS-stimulated young (y)HUVEC and senomorphyc activity on replicative senescent (s)HUVEC, significantly reducing the expression levels of IL-1ß, TNF -α, IL-8, MCP-1, and ICAM-1. Moreover, the ZTE treatment was able to significantly reduce the IL-8 levels secreted in the medium of both LPS-stimulated yHUVEC and sHUVEC. Overall, our data suggest a potential protective role of ZOE on neuroinflammation and endothelial inflammation/activation, thus suggesting its potential relevance in delaying/postponing ARD development and progression, characterized by endothelial dysfunction.

8.
Int J Mol Sci ; 24(6)2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36982191

ABSTRACT

The nuclear factor NF-kB is the master transcription factor in the inflammatory process by modulating the expression of pro-inflammatory genes. However, an additional level of complexity is the ability to promote the transcriptional activation of post-transcriptional modulators of gene expression as non-coding RNA (i.e., miRNAs). While NF-kB's role in inflammation-associated gene expression has been extensively investigated, the interplay between NF-kB and genes coding for miRNAs still deserves investigation. To identify miRNAs with potential NF-kB binding sites in their transcription start site, we predicted miRNA promoters by an in silico analysis using the PROmiRNA software, which allowed us to score the genomic region's propensity to be miRNA cis-regulatory elements. A list of 722 human miRNAs was generated, of which 399 were expressed in at least one tissue involved in the inflammatory processes. The selection of "high-confidence" hairpins in miRbase identified 68 mature miRNAs, most of them previously identified as inflammamiRs. The identification of targeted pathways/diseases highlighted their involvement in the most common age-related diseases. Overall, our results reinforce the hypothesis that persistent activation of NF-kB could unbalance the transcription of specific inflammamiRNAs. The identification of such miRNAs could be of diagnostic/prognostic/therapeutic relevance for the most common inflammatory-related and age-related diseases.


Subject(s)
MicroRNAs , NF-kappa B , Humans , NF-kappa B/genetics , NF-kappa B/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Transcription Factors/metabolism , Data Mining , Aging/genetics
9.
Cell Mol Life Sci ; 80(3): 75, 2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36847916

ABSTRACT

Methyl-CpG binding protein 2 (MeCP2) is a ubiquitous transcriptional regulator. The study of this protein has been mainly focused on the central nervous system because alterations of its expression are associated with neurological disorders such as Rett syndrome. However, young patients with Rett syndrome also suffer from osteoporosis, suggesting a role of MeCP2 in the differentiation of human bone marrow mesenchymal stromal cells (hBMSCs), the precursors of osteoblasts and adipocytes. Here, we report an in vitro downregulation of MeCP2 in hBMSCs undergoing adipogenic differentiation (AD) and in adipocytes of human and rat bone marrow tissue samples. This modulation does not depend on MeCP2 DNA methylation nor on mRNA levels but on differentially expressed miRNAs during AD. MiRNA profiling revealed that miR-422a and miR-483-5p are upregulated in hBMSC-derived adipocytes compared to their precursors. MiR-483-5p, but not miR-422a, is also up-regulated in hBMSC-derived osteoblasts, suggesting a specific role of the latter in the adipogenic process. Experimental modulation of intracellular levels of miR-422a and miR-483-5p affected MeCP2 expression through direct interaction with its 3' UTR elements, and the adipogenic process. Accordingly, the knockdown of MeCP2 in hBMSCs through MeCP2-targeting shRNA lentiviral vectors increased the levels of adipogenesis-related genes. Finally, since adipocytes released a higher amount of miR-422a in culture medium compared to hBMSCs we analyzed the levels of circulating miR-422a in patients with osteoporosis-a condition characterized by increased marrow adiposity-demonstrating that its levels are negatively correlated with T- and Z-scores. Overall, our findings suggest that miR-422a has a role in hBMSC adipogenesis by downregulating MeCP2 and its circulating levels are associated with bone mass loss in primary osteoporosis.


Subject(s)
Bone Diseases, Metabolic , Mesenchymal Stem Cells , Methyl-CpG-Binding Protein 2 , MicroRNAs , Rett Syndrome , Animals , Humans , Rats , 3' Untranslated Regions , Adipogenesis/genetics , Down-Regulation/genetics , Methyl-CpG-Binding Protein 2/genetics , MicroRNAs/genetics
10.
Mech Ageing Dev ; 211: 111792, 2023 04.
Article in English | MEDLINE | ID: mdl-36806605

ABSTRACT

Geroscience puts mechanisms of aging as a driver of the most common age-related diseases and dysfunctions. Under this perspective, addressing the basic mechanisms of aging will produce a better understanding than addressing each disease pathophysiology individually. Worldwide, despite greater functional impairment, life expectancy is higher in women than in men. Gender differences in the prevalence of multimorbidity lead mandatory to the understanding of the mechanisms underlying gender-related differences in multimorbidity patterns and disability-free life expectancy. Extensive literature suggested that inflammaging is at the crossroad of aging and age-related diseases. In this review, we highlight the main evidence on sex/gender differences in the mechanisms that foster inflammaging, i.e. the age-dependent triggering of innate immunity, modifications of adaptive immunity, and accrual of senescent cells, underpinning some biomarkers of inflammaging that show sex-related differences. In the framework of the "gender medicine perspective", we will also discuss how sex/gender differences in inflammaging can affect sex differences in COVID-19 severe outcomes.


Subject(s)
COVID-19 , Inflammation , Female , Humans , Male , Sex Factors , Aging/physiology , Immunity, Innate
12.
Cells ; 11(23)2022 Nov 27.
Article in English | MEDLINE | ID: mdl-36497059

ABSTRACT

One of the main challenges of current research on aging is to identify the complex epigenetic mechanisms involved in the acquisition of the cellular senescent phenotype. Despite some evidence suggested that epigenetic changes of DNA repetitive elements, including transposable elements (TE) sequences, are associated with replicative senescence of fibroblasts, data on different types of cells are scarce. We previously analysed genome-wide DNA methylation of young and replicative senescent human endothelial cells (HUVECs), highlighting increased levels of demethylated sequences in senescent cells. Here, we aligned the most significantly demethylated single CpG sites to the reference genome and annotated their localization inside TE sequences and found a significant hypomethylation of sequences belonging to the Long-Interspersed Element-1 (LINE-1 or L1) subfamilies L1M, L1P, and L1HS. To verify the hypothesis that L1 demethylation could be associated with increased transcription/activation of L1s and/or Alu elements (non-autonomous retroelements that usually depend on L1 sequences for reverse transcription and retrotransposition), we quantified the RNA expression levels of both L1 (generic L1 elements or site-specific L1PA2 on chromosome 14) and Alu elements in young and senescent HUVECs and human dermal fibroblasts (NHDFs). The RNA expression of Alu and L1 sequences was significantly increased in both senescent HUVECs and NHDFs, whereas the RNA transcript of L1PA2 on chromosome 14 was not significantly modulated in senescent cells. Moreover, we found an increased amount of TE DNA copies in the cytoplasm of senescent HUVECs and NHDFs. Our results support the hypothesis that TE, which are significantly increased in senescent cells, could be retrotranscribed to DNA sequences.


Subject(s)
Alu Elements , Endothelial Cells , Humans , Alu Elements/genetics , Long Interspersed Nucleotide Elements/genetics , DNA Methylation/genetics , DNA Transposable Elements/genetics , RNA
13.
Int J Mol Sci ; 23(20)2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36293181

ABSTRACT

Caloric restriction promotes longevity in multiple animal models. Compounds modulating nutrient-sensing pathways have been suggested to reproduce part of the beneficial effect of caloric restriction on aging. However, none of the commonly studied caloric restriction mimetics actually produce a decrease in calories. Sodium-glucose cotransporter 2 inhibitors (SGLT2-i) are a class of drugs which lower glucose by promoting its elimination through urine, thus inducing a net loss of calories. This effect promotes a metabolic shift at the systemic level, fostering ketones and fatty acids utilization as glucose-alternative substrates, and is accompanied by a modulation of major nutrient-sensing pathways held to drive aging, e.g., mTOR and the inflammasome, overall resembling major features of caloric restriction. In addition, preliminary experimental data suggest that SGLT-2i might also have intrinsic activities independent of their systemic effects, such as the inhibition of cellular senescence. Consistently, evidence from both preclinical and clinical studies have also suggested a marked ability of SGLT-2i to ameliorate low-grade inflammation in humans, a relevant driver of aging commonly referred to as inflammaging. Considering also the amount of data from clinical trials, observational studies, and meta-analyses suggesting a tangible effect on age-related outcomes, such as cardiovascular diseases, heart failure, kidney disease, and all-cause mortality also in patients without diabetes, here we propose a framework where at least part of the benefit provided by SGLT-2i is mediated by their ability to blunt the drivers of aging. To support this postulate, we synthesize available data relative to the effect of this class on: 1- animal models of healthspan and lifespan; 2- selected molecular pillars of aging in preclinical models; 3- biomarkers of aging and especially inflammaging in humans; and 4- COVID-19-related outcomes. The burden of evidence might prompt the design of studies testing the potential employment of this class as anti-aging drugs.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Sodium-Glucose Transporter 2 Inhibitors , Animals , Humans , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Sodium-Glucose Transporter 2 , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Inflammasomes , Drug Repositioning , Diabetes Mellitus, Type 2/drug therapy , Aging , Glucose/therapeutic use , TOR Serine-Threonine Kinases , Sodium , Ketones/therapeutic use , Fatty Acids/therapeutic use
14.
Cardiovasc Diabetol ; 21(1): 180, 2022 09 10.
Article in English | MEDLINE | ID: mdl-36088327

ABSTRACT

BACKGROUND: Patients with type 2 diabetes (T2DM) present an increased risk of cardiovascular (CV) disease and excess CV-related mortality. Beyond the established role of brain natriuretic peptide (BNP) and cardiac troponins (cTn), other non-cardiac-specific biomarkers are emerging as predictors of CV outcomes in T2DM. METHODS: Serum levels of soluble suppression of tumorigenesis 2 (sST2), high-sensitivity (hs)-cTnI, and N-terminal (NT)-proBNP were assessed in 568 patients with T2DM and 115 healthy controls (CTR). Their association with all-cause mortality and the development of diabetic complications was tested in T2DM patients over a median follow-up of 16.8 years using Cox models and logistic regressions. RESULTS: sST2 followed an increasing trend from CTR to uncomplicated T2DM patients (T2DM-NC) to patients with at least one complication (T2DM-C), while hs-cTnI was significantly higher in T2DM-C compared to CTR but not to T2DM-NC. A graded association was found between sST2 (HR 2.76 [95% CI 1.20-6.33] for ≥ 32.0 ng/mL and 2.00 [1.02-3.94] for 16.5-32.0 ng/mL compared to < 16.5 ng/mL, C-statistic = 0.729), NT-proBNP (HR 2.04 [1.90-4.55] for ≥ 337 ng/L and 1.48 [1.05-2.10] for 89-337 ng/L compared to < 89 ng/L, C-statistic = 0.741), and 15-year mortality in T2DM, whereas increased mortality was observed in patients with hs-cTnI ≥ 7.8 ng/L (HR 1.63 [1.01-2.62]). A 'cardiac score' based on the combination of sST2, hs-cTnI, and NT-proBNP was significantly associated with all-cause mortality (HR 1.35 [1.19-1.53], C-statistic = 0.739) and development of CV events. CONCLUSIONS: sST2, hs-cTnI, and NT-proBNP are associated with 15-year mortality and onset of CV events in T2DM. The long-term prognostic value of sST2 and its ability to track variables related to insulin resistance and associated metabolic disorders support its implementation into routine clinical practice.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/diagnosis , Humans , Interleukin-1 Receptor-Like 1 Protein , Natriuretic Peptide, Brain , Peptide Fragments , Prognosis , Retrospective Studies , Troponin I , Troponin T
15.
Cells ; 11(16)2022 08 12.
Article in English | MEDLINE | ID: mdl-36010584

ABSTRACT

Cellular senescence is a hallmark of aging and a promising target for therapeutic approaches. The identification of senescent cells requires multiple biomarkers and complex experimental procedures, resulting in increased variability and reduced sensitivity. Here, we propose a simple and broadly applicable imaging flow cytometry (IFC) method. This method is based on measuring autofluorescence and morphological parameters and on applying recent artificial intelligence (AI) and machine learning (ML) tools. We show that the results of this method are superior to those obtained measuring the classical senescence marker, senescence-associated beta-galactosidase (SA-ß-Gal). We provide evidence that this method has the potential for diagnostic or prognostic applications as it was able to detect senescence in cardiac pericytes isolated from the hearts of patients affected by end-stage heart failure. We additionally demonstrate that it can be used to quantify senescence "in vivo" and can be used to evaluate the effects of senolytic compounds. We conclude that this method can be used as a simple and fast senescence assay independently of the origin of the cells and the procedure to induce senescence.


Subject(s)
Artificial Intelligence , Cellular Senescence , Aging , Biomarkers , Flow Cytometry/methods , Humans
16.
Nutrients ; 14(14)2022 Jul 08.
Article in English | MEDLINE | ID: mdl-35889769

ABSTRACT

BACKGROUND: Nutraceutical combinations (NCs) against hypercholesterolemia are increasing in the marketplace. However, the availability of NCs without monacolin K is scarce even though the statin-intolerant population needs it. METHODS: This study is a parallel-group, randomized, placebo-controlled, double-blind trial. We evaluated the effects of the NC containing phytosterols, bergamot, olive fruits, and vitamin K2 on lipid profile and inflammatory biomarkers in 118 subjects (mean age ± SD, 57.9 ± 8.8 years; 49 men and 69 women) with hypercholesterolemia (mean total cholesterol ± SD, 227.4 ± 20.8 mg/dL) without clinical history of cardiovascular diseases. At baseline and 6 and 12 weeks of treatment, we evaluated lipid profile (total, LDL and HDL cholesterol, and triglycerides), safety (liver, kidney, and muscle parameters), and inflammatory biomarkers such as hs-CRP, leukocytes, interleukin-32, and interleukin-38 and inflammatory-microRNAs (miRs) miR-21, miR-126, and miR-146a. RESULTS: Compared to the placebo, at 6 and 12 weeks, NC did not significantly reduce total cholesterol (p = 0.083), LDL cholesterol (p = 0.150), and triglycerides (p = 0.822). No changes were found in hs-CRP (p = 0.179), interleukin-32 (p = 0.587), interleukin-38 (p = 0.930), miR-21 (p = 0.275), miR-126 (p = 0.718), miR-146a (p = 0.206), myoglobin (p = 0.164), and creatine kinase (p = 0.376). Among the two reported, only one adverse event was probably related to the nutraceutical treatment. CONCLUSIONS: The evaluated nutraceutical combination did not change serum lipid profile and inflammatory parameters, at least not with the daily dose applied in the present study.


Subject(s)
Dietary Supplements , Hypercholesterolemia , Adult , Aged , Biomarkers , C-Reactive Protein , Cholesterol, LDL , Double-Blind Method , Female , Humans , Hypercholesterolemia/drug therapy , Lipids , Lovastatin , Male , MicroRNAs , Middle Aged , Triglycerides
17.
Antioxidants (Basel) ; 11(6)2022 May 24.
Article in English | MEDLINE | ID: mdl-35739934

ABSTRACT

Chronic hyperglycemia, the diagnostic biomarker of Type 2 Diabetes Mellitus (T2DM), is a condition that fosters oxidative stress and proinflammatory signals, both involved in the promotion of cellular senescence. Senescent cells acquire a proinflammatory secretory phenotype, called SASP, exacerbating and perpetuating the detrimental effects of hyperglycemia. Bioactive compounds can exert antioxidant and anti-inflammatory properties. However, the synergistic anti-inflammatory and antioxidant effects of the most extensively investigated natural compounds have not been confirmed yet in senescent cells and in hyperglycemic conditions. Here, we exposed young and replicative senescent HUVEC (yHUVEC and sHUVEC) to a high-glucose (HG) condition (45 mM) and treated them with Polydatin (POL), Curcumin (CUR) and Quercetin (QRC), alone or in combination (MIX), to mirror the anti-inflammatory component OxiDefTM contained in the novel nutraceutical GlicefenTM (Mivell, Italy). In both yHUVEC and sHUVEC, the MIX significantly decreased the expression levels of inflammatory markers, such as MCP-1, IL-1ß and IL-8, and ROS production. Importantly, in sHUVEC, a synergistic effect of the MIX was observed, suggesting its senomorphic activity. Moreover, the MIX was able to reduce the expression level of RAGE, a receptor involved in the activation of proinflammatory signaling. Overall, our data suggest that the consumption of nutraceuticals containing different natural compounds could be an adjuvant supplement to counteract proinflammatory and pro-oxidative signals induced by both hyperglycemic and senescence conditions.

18.
Int J Mol Sci ; 23(10)2022 May 17.
Article in English | MEDLINE | ID: mdl-35628426

ABSTRACT

Disorders of lipoprotein metabolism are among the major risk factors for cardiovascular disease (CVD) development. Single nucleotide polymorphisms (SNPs) have been associated with the individual variability in blood lipid profile and response to lipid-lowering treatments. Here, we genotyped 34 selected SNPs located in coding genes related to lipid metabolism, inflammation, coagulation, and a polymorphism in the MIR499 gene-a microRNA previously linked to CVD-to evaluate the association with lipid trait in subjects with moderate dyslipidemia not on lipid-lowering treatment (Treatment-naïve (TN) cohort, n = 125) and in patients treated with statins (STAT cohort, n = 302). We also explored the association between SNPs and the effect of a novel phytochemical lipid-lowering treatment in the TN cohort. We found that 6 SNPs (in the MIR499, TNFA, CETP, SOD2, and VEGFA genes) were associated with lipid traits in the TN cohort, while no association was found with the response to twelve-week phytochemical treatment. In the STAT cohort, nine SNPs (in the MIR499, CETP, CYP2C9, IL6, ABCC2, PON1, IL10, and VEGFA genes) were associated with lipid traits, three of which were in common with the TN cohort. Interestingly, in both cohorts, the presence of the rs3746444 MIR499 SNP was associated with a more favorable blood lipid profile. Our findings could add information to better understand the individual genetic variability in maintaining a low atherogenic lipid profile and the response to different lipid-lowering therapies.


Subject(s)
Cardiovascular Diseases , Dyslipidemias , Hypolipidemic Agents , MicroRNAs , Aryldialkylphosphatase/genetics , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/genetics , Cardiovascular Diseases/metabolism , Dyslipidemias/drug therapy , Dyslipidemias/genetics , Dyslipidemias/metabolism , Humans , Hypolipidemic Agents/pharmacology , Lipid Metabolism/drug effects , MicroRNAs/genetics , Phytochemicals/pharmacology , Polymorphism, Single Nucleotide
19.
Cell Mol Life Sci ; 79(5): 273, 2022 May 03.
Article in English | MEDLINE | ID: mdl-35503137

ABSTRACT

Sodium-glucose cotransporter 2 (SGLT-2) inhibitors (i) reduce cardiovascular and renal events in patients with and without type 2 diabetes (T2D). However, the underlying mechanisms are debated. Low-grade inflammation (LGI) is a key driver of vascular complications, suggested to be attenuated by SGLT-2i in animal models. Based on a specific working hypothesis, here we investigated the net effect of SGLT-2i on LGI in patients with T2D and the possible underlying mechanism. We enrolled patients with T2D treated either with a stable therapy with SGLT-2i or with other glucose-lowering drugs (GLD) (n = 43 per group after matching for a range of pro-inflammatory variables), and tested hs-CRP and interleukin (IL)-6 as primary variables of interest. Patients treated with SGLT-2i had lower circulating levels of IL-6, a prototypical marker of LGI, but also of uric acid and fasting insulin, compared with patients treated with other GLD. Then, to explore whether uric acid and insulin might mediate the effect of SGLT-2i on IL-6, we tested physiologically pertinent doses of these two molecules (i.e. 0.5 mM uric acid and 1 nM insulin) in two in vitro models of LGI, i.e. monocytes (THP-1) treated with LPS and endothelial cells (HUVEC) exposed to hyperglycaemia. Results from in vitro models supported a pro-inflammatory role for uric acid and its combination with insulin in monocytes and for uric acid alone in hyperglycaemia-stimulated endothelial cells. On the contrary, we observed no drug-intrinsic, anti-inflammatory effect for dapagliflozin, empagliflozin, and canagliflozin in the same models. Overall, these results suggest that SGLT-2i possess a tangible activity against LGI, an effect possibly mediated by their ability to lower uric acid and insulin concentrations and that juxtaposes other proposed mechanisms in explaining the observed benefit of this class on cardiovascular and renal endpoints.


Subject(s)
Diabetes Mellitus, Type 2 , Hyperglycemia , Sodium-Glucose Transporter 2 Inhibitors , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Endothelial Cells , Glucose , Humans , Hyperglycemia/complications , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Insulin , Interleukin-6 , Sodium-Glucose Transporter 2 Inhibitors/adverse effects , Uric Acid/therapeutic use
20.
Mech Ageing Dev ; 204: 111667, 2022 06.
Article in English | MEDLINE | ID: mdl-35341896

ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2 infection has been of unprecedented clinical and socio-economic worldwide relevance. The case fatality rate for COVID-19 grows exponentially with age and the presence of comorbidities. In the older patients, COVID-19 manifests predominantly as a systemic disease associated with immunological, inflammatory, and procoagulant responses. Timely diagnosis and risk stratification are crucial steps to define appropriate therapies and reduce mortality, especially in the older patients. Chronically and systemically activated innate immune responses and impaired antiviral responses have been recognized as the results of a progressive remodeling of the immune system during aging, which can be described by the words 'immunosenescence' and 'inflammaging'. These age-related features of the immune system were highlighted in patients affected by COVID-19 with the poorest clinical outcomes, suggesting that the mechanisms underpinning immunosenescence and inflammaging could be relevant for COVID-19 pathogenesis and progression. Increasing evidence suggests that senescent myeloid and endothelial cells are characterized by the acquisition of a senescence-associated pro-inflammatory phenotype (SASP), which is considered as the main culprit of both immunosenescence and inflammaging. Here, we reviewed this evidence and highlighted several circulating biomarkers of inflammaging that could provide additional prognostic information to stratify COVID-19 patients based on the risk of severe outcomes.


Subject(s)
COVID-19 , Aging , Biomarkers , COVID-19/diagnosis , Endothelial Cells , Humans , Inflammation , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...